Bor


Bor w encyklopedii

Z Wikipedii, wolnej encyklopedii Przejdź do nawigacji Przejdź do wyszukiwania 5 B Uwaga

Bor (B, łac. borium) – pierwiastek chemiczny o liczbie atomowej 5, półmetal z bloku p układu okresowego.

Spis treści

Charakterystyka | edytuj kod

Bor pod względem chemicznym przypomina krzem i węgiel, gdyż tworzy borowodory – analogi węglowodorów i krzemowodorów. Reakcja boru z gorącym, stężonym kwasem azotowym prowadzi do utworzenia kwasu borowego H3BO3. Bor tworzy kompleksy z alkoholami polihydroksylowymi, reakcja kwasu borowego z mannitolem jest jednym ze sposobów oznaczania zawartości boru w próbce.

Odmiany alotropowe | edytuj kod

Bor posiada dwie odmiany alotropowe:

Zastosowanie | edytuj kod

Bor w postaci wolnego pierwiastka stosuje się jako domieszkę do półprzewodników, natomiast związki boru znajdują zastosowanie w postaci lekkich materiałów, nietoksycznych środków owadobójczych i konserwantów oraz odczynników dla syntezy chemicznej.

W technice jądrowej stosowany w produkcji szkła ochronnego, liczników borowych i prętów regulacyjnych reaktorów jądrowych (z uwagi na duży przekrój czynny na neutrony, ok. 75 000 fm²).

Odkrycie | edytuj kod

Czysty bor wyizolowało w 1808 jednocześnie trzech chemików: Humphry Davy (przez elektrolizę kwasu borowego), Joseph Louis Gay-Lussac i Louis Jacques Thénard (w reakcji potasu z tlenkiem boru B2O3)[5].

Występowanie | edytuj kod

Zawartość w górnych warstwach Ziemi wynosi 0,0009%. Ważniejsze minerały boru to: boraks, kernit, kolemanit i aszaryt.

Stabilne izotopy to 10B (19%) oraz 11B (81%). W naturze nigdy nie występuje jako wolny pierwiastek, jego głównym źródłem jest boraks.

Z punktu widzenia odżywiania, bogatym źródłem boru są świeże warzywa i owoce, a wśród tych ostatnich przede wszystkim orzechy.

Związki | edytuj kod

 Z tym tematem związana jest kategoria: związki boru.

Chemia nieorganiczna boru bywa określana jako najbardziej złożona spośród wszystkich pierwiastków[6]. Najczęściej przyjmuje on stopień utlenienia III[7]. W zdecydowanej większości związków jest on trójwiązalny, ma przy tym zdolność do tworzenia związków z wiązaniami wielocentrowymi[6] (jednym z przykładów jest diboran, B
2H
6, zawierający trójcentrowe-dwuelektronowe wiązania B−H−B). Znana jest bardzo duża liczba jego związków, zwłaszcza borków metali, o bardzo zróżnicowanej stechiometrii, od M
5B do MB
66 (a nawet >100)[6], które nie są zgodne ze standardowymi koncepcjami wiązania chemicznego[8]. Przykłady tego typu związków to B
4C, FeB, Mn
4B, Pd
5B
2 i wiele innych[6][8]. Atomy boru w takich związkach mogą być izolowane lub tworzyć rozmaite układy zawierające wiązania B−B: pary, łańcuchy proste, rozgałęzione i podwójne, warstwy i sieci trójwymiarowe[9]. Znanych jest też wiele układów niestechiometrycznych o zmiennym składzie[6].

Związki boru wykazują zróżnicowaną rozpuszczalność w wodzie[10]. Oksoborany są w większości słabo rozpuszczalne (poza solami potasowców)[11], jednak żaden ze związków boru nie strąca się w sposób ilościowy, co stanowi problem w oczyszczaniu ścieków[10].

Przykładowe związki boru:

Lotne związki boru barwią płomień na kolor zielony[11][12].

Znaczenie biologiczne | edytuj kod

Bor, będąc pierwiastkiem śladowym, jest niezbędny dla roślin i zwierząt. U roślin odpowiada za transport związków organicznych w łyku (głównie cukrów), wpływa na prawidłowy wzrost łagiewki pyłkowej (jego brak powoduje zahamowanie jej wzrostu), wpływa na wytworzenie elementów płciowych u roślin. Jest pierwiastkiem, który bardzo trudno przemieszcza się w roślinie. Jego niedobór może powodować zgorzel liści sercowych i suchą zgniliznę korzeni buraka.

Bor ma również wpływ na organizm człowieka, przede wszystkim na jego kościec. Przypuszcza się, iż jest niezbędny do prawidłowej gospodarki wapniowej organizmu. Razem z wapniem, magnezem i witaminą D reguluje metabolizm, wzrost, rozwój tkanki kostnej.

Jego niedobór powoduje utratę wapnia i demineralizację kości.

W większych ilościach związki boru, szczególnie lotne, są trujące.

Uwagi | edytuj kod

  1. Z uwagi na zmienność abundancji izotopów pierwiastka w naturze, podany został zakres wartości masy atomowej dla naturalnych źródeł tego pierwiastka. W dostępnych komercyjnie produktach mogą występować znaczne odchylenia masy atomowej od podanej, z uwagi na zmianę składu izotopowego w rezultacie nieznanego bądź niezamierzonego frakcjonowania izotopowego.

Przypisy | edytuj kod

  1. a b c CRC Handbook of Chemistry and Physics, David R.D.R. Lide (red.), wyd. 90, Boca Raton: CRC Press, 2009, s. 4-52, ISBN 978-1-4200-9084-0 .
  2. Bor (nr 266620) (ang.) – karta charakterystyki produktu Sigma-Aldrich (Merck KGaA) na obszar Stanów Zjednoczonych (ze względu na zmianę sposobu wywołania karty charakterystyki, aby pobrać kartę dla obszaru USA, na stronie produktu należy zmienić lokalizację na "United States" i ponownie pobrać kartę). [dostęp 2011-10-02].
  3. JurisJ. Meija JurisJ. i inni, Atomic weights of the elements 2013 (IUPAC Technical Report), „Pure and Applied Chemistry”, 88 (3), 2016, s. 265–291, DOI10.1515/pac-2015-0305 .
  4. Bor (CID: 5462311) (ang.) w bazie PubChem, United States National Library of Medicine.
  5. Ignacy Eichstaedt: Księga pierwiastków. Warszawa: Wiedza Powszechna, 1973, s. 96. OCLC 839118859.
  6. a b c d e N. N. Greenwood, A. Earnshaw: Chemistry of the elements. Oxford; New York: Pergamon Press, 1984, s. 144–151. ISBN 0-08-022057-6.
  7. PradyotP. Patnaik PradyotP., Handbook of Inorganic Chemicals, London: McGraw-Hill, 2003, s. 122–124, ISBN 0-07-049439-8 .
  8. a b P. Enghag: Encyclopedia of the Elements. Technical Data - History - Processing - Applications. Wiley, 2004, s. 806. ISBN 978-3-527-30666-4.
  9. Adam Bielański: Podstawy chemii nieorganicznej. Wyd. 5. Warszawa: PWN, 2002, s. 782–784. ISBN 83-01-13654-5.
  10. a b Remy, Patricia, Muhr, Hervé, Plasari, Edouard, Ouerdiane, Imen. Removal of boron from wastewater by precipitation of a sparingly soluble salt. „Environmental Progress”. 24 (1), s. 105-110, 2005. DOI: 10.1002/ep.10058
  11. a b J. Minczewski, Z. Marczenko: Chemia analityczna. T. 1: Podstawy teoretyczne i analiza jakościowa. Warszawa: PWN, 2001, s. 356–357. ISBN 83-01-13499-2.
  12. C. Chambers, A.K. Holliday: Modern Inorganic Chemistry. Butterworths, 1975, s. 158.

Bibliografia | edytuj kod

  1. Jerzy Zdzisław Minczewski, Zygmunt Marczenko: Chemia analityczna. 1, Podstawy teoretyczne i analiza jakościowa. Warszawa: Wydawnictwo Naukowe PWN, 2001. ​ISBN 83-01-13499-2​ (t. 1).
  2. Witold Mizerski, Piotr Bernatowicz (chemia): Tablice chemiczne. Warszawa: Adamantan, 2004. ​ISBN 83-7350-040-5​ (opr. miękka).
  3. Ryszard Szepke: 1000 słów o atomie i technice jądrowej. Wydawnictwo Ministerstwa Obrony Narodowej, 1982. ISBN 83-11-06723-6. (pol.)
Kontrola autorytatywna (pierwiastek chemiczny):
Na podstawie artykułu: "Bor" pochodzącego z Wikipedii
OryginałEdytujHistoria i autorzy