Planetka


Planetoida w encyklopedii

Z Wikipedii, wolnej encyklopedii (Przekierowano z Planetka) Przejdź do nawigacji Przejdź do wyszukiwania Planetoida Ida sfotografowana przez sondę kosmiczną Galileo w czasie podróży do Jowisza. Zdjęcie odkryło księżyc planetoidy – Daktyl. Planetoida 2004 FH w ruchu

Planetoida (planeta + gr. eídos – postać), asteroida (gr. asteroeidés – gwiaździsty), planetka (ang. minor planet) – ciało niebieskie o małych rozmiarach (od kilku metrów do czasem ponad 1000 km), obiegające gwiazdę (w szczególności Słońce), posiadające stałą powierzchnię skalną lub lodową, bardzo często – przede wszystkim w przypadku planetoid o mniejszych rozmiarach i mało masywnych – o nieregularnym kształcie, często noszącym znamiona kolizji z innymi podobnymi obiektami.

W styczniu 2019 roku znanych było ponad 790 tys. planetoid (w tym ponad 520 tys. ponumerowanych, z czego ponad 21 tys. ma także nazwy własne)[a], z których większość porusza się po orbitach nieznacznie nachylonych do ekliptyki, pomiędzy orbitami Marsa i Jowisza – w tzw. głównym pasie planetoid. Jeszcze większa zapewne jest liczba planetoid w Pasie Kuipera, jednak odkryto dotychczas niewielką ich część, a nachylenie ich orbit do ekliptyki może być znaczne.

Trudno oszacować całkowitą liczbę planetoid występujących w Układzie Słonecznym; wynosi ona zapewne wiele milionów. Sam główny pas planetoid zawiera według aktualnych szacunków od 1,1 do 1,9 miliona planetoid o średnicy co najmniej 1 km[1] oraz dziesiątki milionów mniejszych[2][3].

W październiku 2017 odkryto 1I/ʻOumuamua, pierwszy obiekt, który początkowo został uznany za planetoidę pochodzącą spoza Układu Słonecznego[4][5]. Jednak zaobserwowane później niegrawitacyjne przyśpieszanie obiektu[6] wskazuje, że może on być jednak kometą[7].

Spis treści

Powstanie planetoid | edytuj kod

Reguła Titiusa-Bodego przewiduje, że pomiędzy orbitami Marsa i Jowisza (w odległości około 2,8 au od Słońca) powinna znajdować się planeta. Jednak obszar o szerokości około 500 milionów kilometrów takiego obiektu nie zawiera. Już w XVII wieku faktem tym zainteresował się Jan Kepler, jednak dopiero pod koniec XVIII wieku zaczęto się szerzej interesować tym zagadnieniem, a początek kolejnego stulecia przyniósł obserwacyjne rozwiązanie kwestii braku planety. Pierwszy obiekt, nazwany później Ceres (obecnie klasyfikowany jako planeta karłowata), wypełniający lukę pomiędzy orbitami Marsa i Jowisza odkrył 1 stycznia 1801 roku Giuseppe Piazzi w Palermo. Kolejne lata przyniosły odkrycia większej liczby tych ciał niebieskich, które nazwano planetoidami.

Według najbardziej prawdopodobnej hipotezy, planetoidy powstawały w początkowym okresie kształtowania się Układu Słonecznego. Tak jak i same planety, utworzyły się one z obłoku gazowo-pyłowego – pierwotnej mgławicy, z której również powstało Słońce[8]. Z gazu i pyłu mgławicowego, który w gigantycznym dysku wirował wokół Słońca, zaczęły się z wolna tworzyć większe skupiska materii. Nieduże, bliższe Słońca planety (Merkury, Wenus, Ziemia i Mars) powstawały głównie z cząstek stałych (akrecja), które jednak często zawierały też bardziej lotne substancje (np. wodę). Gazowe olbrzymy (Jowisz, Saturn, Uran i Neptun) potrafiły przechwycić także gazy. Pomiędzy Marsem a Jowiszem mogłaby utworzyć się teoretycznie kolejna planeta, jednak – jak dziś się uważa – silne oddziaływanie grawitacyjne Jowisza nie dopuściło do połączenia się mniejszych ciał. W ten sposób pozostały mniejsze i mało masywne ciała, których było bardzo wiele. Silne oddziaływanie gigantycznego Jowisza wytrącało je z ich orbit, w wyniku czego zderzały się one często, zmieniając swoje trajektorie.

Ogólnie ewolucja planetoid zależała od odległości od Słońca, czasu akrecji i ich wielkości. W pobliżu Słońca lotne związki (w tym woda) były w postaci gazowej. Dalej od Słońca związki te mogły wchodzić w skład minerałów (np. tworząc serpentynit), a jeszcze dalej sama woda występowała w stanie stałym. Dlatego dalsze od Słońca planetoidy zawierają więcej wody (w postaci lodu). Czas akrecji określał zawartość krótkożyciowych izotopów promieniotwórczych (głównie izotopu 26Al)[9]. Te izotopy były głównym źródłem ciepła. W przypadku małych ciał jednak ogrzewanie to niewiele mogło zwiększyć temperaturę ciała, wskutek szybkiej utraty ciepła i nie nastąpił tam istotny metamorfizm. Natomiast duże planetoidy zostały ogrzane do temperatury topnienia krzemianów i doszło tam do dyferencjacji magmy jak na planetoidzie Westa. Istotnym czynnikiem ewolucji planetoid są też zderzenia pomiędzy nimi. Zderzenia doprowadzały niejednokrotnie do rozbicia wielu z nich na mniejsze obiekty. Fragmenty te często docierają na Ziemię jako meteoryty. Niektóre różnice w składzie obserwowanych dziś planetek tłumaczyć można tym, że pochodzą one z różnych warstw wcześniej rozbitych planetozymali, z których wykształcały się planetoidy. Konkurencyjna teoria wysunięta przez profesora Thomasa van Flandera mówi o powstaniu jednego lub kilku dużych ciał w obrębie pasa planetoid, które pod wpływem grawitacji Jowisza lub w czasie zderzenia rozpadły się. Ta sama teoria tłumaczy powstanie komet jako fragmentów zniszczonego około 3 mln lat temu lodowego księżyca jednej ze skalnych planet. Obecnie jednak pochodzenie komet wiąże się z tzw. Obłokiem Oorta.

Podobnie zapewne wyglądało powstawanie dalszych planetoid, które dziś krążą po orbitach poza Uranem, Neptunem oraz jeszcze dalej. W ich składzie można jednak stwierdzić więcej lodu wodnego. Dla astronomów niezwykle ważne jest poznanie fizyki tych ciał (podobnie jak i komet), gdyż w rozszyfrowaniu ich historii ukryte są tajniki powstania całego Systemu Słonecznego.

Orbity planetoid oraz ich występowanie | edytuj kod

Orbity wielu planetoid cechuje znaczny mimośród oraz to, że są one bardzo gęsto rozmieszczone w pewnych obszarach Układu Słonecznego, co znaczy, że ich orbity są podobne. Spora ilość planetoid krążących poza orbitą Neptuna wykazuje się także trajektoriami znacznie nachylonymi do ekliptyki.

Najczęściej wymieniane w literaturze astronomicznej grupy planetoid:

Obrazowe przedstawienie usytuowania planetoid w wewnętrznej części Układu Słonecznego i aż do okolic orbity Jowisza (rzut na płaszczyznę ekliptyki). Zaznaczono planetoidy z pasa planetoid (białe punkty), dwie grupy planetoid trojańskich (obóz trojański i grecki; zielone), rodzinę planetoidy Hilda (pomarańczowe) i inne.

Występowanie planetoid | edytuj kod

Występowanie znanych planetoid w poszczególnych grupach według stanu na 1 stycznia 2019 roku[10]:

Cechy fizyczne planetoid | edytuj kod

Zestawienie zdjęć planetoid obserwowanych z bliska przez sondy kosmiczne do 2011 roku. Są to w kolejności od największej do najmniejszej: (4) Westa, (21) Lutetia, (253) Mathilde, (243) Ida i jej księżyc Daktyl, (433) Eros, (951) Gaspra, (2867) Šteins i (25143) Itokawa.

Planetoidy są niewielkimi ciałami kosmicznymi, wśród których nieliczne mogą wykazać się rozmiarami powyżej 1000 km (w tej grupie nie ma ani jednej planetoidy z pasa głównego). Gdy chodzi o wskazanie jednoznacznej dolnej granicy rozmiarów dla tych ciał, sprawa się bardziej komplikuje. Najmniejsze zaobserwowane podczas przelotu w pobliżu Ziemi planetoidy miały rozmiary kilku metrów. Zapewne istnieją ogromne ilości jeszcze mniejszych obiektów, które należałoby raczej nazywać meteoroidami. Wiele takich „kosmicznych kamieni” wpada w atmosferę Ziemi, dając zjawiska meteoru (popularnie „spadająca gwiazda”) lub bolidu (bardzo jasny obiekt, któremu towarzyszy często grzmot). Niektóre bolidy nie spalają się całkowicie w atmosferze i upadają na powierzchnię Ziemi. Odłamki takie są nazywane meteorytami. Badanie ich daje szansę poznania budowy i składu chemicznego planetoid.

Powierzchnie planetoid | edytuj kod

Porównanie wielkości Westy i Ceres z ziemskim Księżycem

Cała masa materiału skalnego w pasie głównym zbliżona jest do masy ziemskiego Księżyca. Największa z planetoid (1) Ceres kształtem swoim przypomina planety (jest w przybliżeniu elipsoidą), co zdaje się potwierdzać hipotezę, że ukształtowała się w podobny do planet sposób i dotrwała w prawie niezmienionej formie do dziś. Ceres jest zaliczana do planet karłowatych. Natomiast najlepiej widoczna, ale mniejsza (4) Westa, ma mniej regularny kształt wynikły ze zderzeń z meteoroidami i nie zalicza się jej do planet karłowatych. Można na nich dostrzec obszary jasne i ciemne, wzniesienia i duże kratery uderzeniowe. Ich powierzchnie były dokładniej badane za pomocą sondy kosmicznej Dawn.

Również powierzchnie mniejszych planetoid usiane są licznymi kraterami uderzeniowymi, na większości z nich leży warstwa regolitu. Bezpośrednie badania za pomocą sond kosmicznych ukazują obrazy ciał o nieregularnym kształcie, podobne do księżyców Marsa, które – według jednej z hipotez – są planetoidami przechwyconymi w przeszłości przez siły grawitacyjne tej planety.

Typy planetoid | edytuj kod

 Osobny artykuł: Typy spektralne planetoid.

Wśród planetoid można wyróżnić na podstawie badania widma następujące klasy spektralne:

  • klasa C – w składzie powierzchni przeważa węgiel i związki węgla, planetoidy te mają małe albedo
  • klasa S – planetoidy, na których powierzchni stwierdza się występowanie dużej ilości materiału krzemianowego
  • klasa M – planetoidy o składzie niklowo-żelazowym, metaliczne
  • klasa E – planetoidy, w których widmach występuje minerał enstatyt, rzadkie
  • klasa V – skład chemiczny powierzchni podobny do klasy S, jednak dodatkowo występuje tam podwyższony udział piroksenu
  • klasa G – podgrupa klasy C, charakterystyczna duża zawartość węgla, jednakże w nadfiolecie występują dodatkowe linie absorpcyjne; do tej klasy należy m.in. Ceres (planeta karłowata)
  • klasa B – podobne do klasy C i G, wykazują odstępstwa w nadfioletowej części widma
  • klasa F – również podgrupa klasy C, jednak z różnicami w ultrafioletowej części widma, dodatkowo brak linii absorpcyjnych na długości fal wody
  • klasa P – planetoidy o bardzo małym albedo, najjaśniejsze w czerwonej części widma, w skład najprawdopodobniej wchodzą krzemiany z udziałem związków węgla, występują na zewnętrznych obrzeżach pasa głównego
  • klasa D – planetoidy o podobnym składzie jak klasa P, mają małe albedo i są najjaśniejsze w czerwonej części widma
  • klasa R – planetoidy podobnie zbudowane jak klasy V, wykazują jednak duży udział w składzie oliwinu i piroksenu
  • klasa A – widmo tych planetoid wykazuje wyraźne linie oliwinu
  • klasa T – wykazują ciemne czerwonawe widmo, różnią się jednak od klas P i R

Księżyce planetoid | edytuj kod

Odkrywa się także coraz więcej planetek posiadających swoje własne naturalne satelity. Wielu z towarzyszy planetoid ma niewiele mniejsze rozmiary od samych planetoid – takie pary obiektów nazywamy planetoidami podwójnymi.

Zderzenia planetoid | edytuj kod

Kolizje z planetami | edytuj kod

Artystyczna wizja zderzenia planetoidy z młodą Ziemią wg Donalda Davisa

Planetoidy, będąc ciałami mało masywnymi, mogą być wytrącane ze swych orbit poprzez grawitacyjne oddziaływanie planet, w szczególności Jowisza. Ich trajektorie mogą się wtedy znacznie zmieniać, tak że zdarzyć się może, że jakaś planetoida wejdzie na kurs kolizyjny z planetą. W przeszłości wydarzenia takie miały miejsce bardzo często; ich pozostałości możemy oglądać na powierzchni Księżyca, Merkurego, Marsa oraz wielu księżyców planet. Również powierzchnie Ziemi i Wenus nie są wolne od kraterów uderzeniowych, jednak w przypadku tych planet zjawiska atmosferyczne i wietrzenie w wielu przypadkach skutecznie zatarły ślady takich kosmicznych katastrof.

Nie ma podstaw do stwierdzenia, że kiedyś w przyszłości nie zdarzy się kolejne uderzenie planetoidy w Ziemię lub inną planetę czy jakiś księżyc. Astronomowie coraz baczniej przyglądają się przelatującym w pobliżu naszej planety planetoidom, przede wszystkim tym z grupy Atena, gdyż są one potencjalnie największym zagrożeniem dla Ziemi. Uderzenie kilkukilometrowego ciała mogłoby doprowadzić do bardzo poważnych zniszczeń, a nawet do unicestwienia wielu gatunków zwierząt i być może ludzi.

W celu skwantyfikowania zagrożenia spowodowanego możliwym uderzeniem w Ziemię przez planetoidę, stworzono skalę Torino i skalę Palermo. Skala Torino jest dziesięciostopniowa, z 10 najwyższym stopniem zagrożenia odpowiadającym kolizjom zagrażającym istnieniu cywilizacji. Do tej pory obiektem o najwyższym zagrożeniu w skali Torino był (99942) Apophis, który przez krótki okres w 2004 roku sklasyfikowany był na stopniu 4 w tej skali.

Zderzenia pomiędzy sobą | edytuj kod

Wynik zderzenia pomiędzy planetoidami zależy od rozmiarów obiektów biorących w nim udział. Jeżeli bardzo mała planetoida uderzy w znacznie większy obiekt, to wybije krater na jej powierzchni o rozmiarach ok. dziesięć razy większych niż własne. Ponieważ planetoidy są znacznie mniejsze niż planety, materiał wyrzucony z krateru ucieknie w przestrzeń i rozpocznie samodzielną wędrówkę wokół Słońca. Orbita, po której będzie się poruszać, będzie jednak podobna do tej, którą miała uderzająca planetoida i jest możliwe, że wyrzucony materiał uderzy znów w naznaczoną kraterem planetoidę.

Uderzenie większej planetoidy może rozbić trafiony obiekt. Jednak energia zderzenia może być zbyt mała, aby powstałe fragmenty mogły się oddalić od siebie i przyciąganie grawitacyjne sprawia, że tworzy się nieregularna bryła gruzu. Następne niewielkie uderzenia mogą rozbić powierzchnię i pokryć tę bryłę warstwą skał i pyłu. Przypadkowy obserwator nie będzie wtedy wiedział, że planetoida składa się z wielu kawałków.

Uderzenie dużego ciała może powodować nie tylko rozkruszenie planetoidy, ale i rozproszenie powstałych fragmentów. Wówczas tworzą one rodzinę planetoid, która następnie może rozciągać się wzdłuż orbity rozbitego obiektu.

Małych planetoid jest znacznie więcej niż dużych. Na każdą planetoidę o średnicy większej niż 10 km przypada kilkaset planetoid o średnicy ponad 1 km i kilkadziesiąt tysięcy o średnicy większej niż 0,1 km[11]. Dlatego powstawanie kraterów jest znacznie częstsze niż rozbicie. Planetoidy, które zostały rozbite, wcześniej mogły zostać rozkruszone. Mimo że planetoidy poruszają się głównie w jednym kierunku, czasem mogą zderzać się z prędkością kilku kilometrów na sekundę.

Badania planetoid | edytuj kod

 Ta sekcja jest niekompletna. Jeśli możesz, rozbuduj ją.

Misje kosmiczne | edytuj kod

Zakończone badania planetoid przez sondy kosmiczne
Misje prowadzone aktualnie

Zobacz też | edytuj kod

Uwagi | edytuj kod

  1. 1 stycznia 2019 roku: 790 976 planetoid, w tym 523 824 ponumerowanych, z czego 21 791 nazwanych (w tym 1 o orbicie hiperbolicznej), oraz 267 152 nieponumerowanych, według danych z bazy danych NASA/JPL/SSD: How Many Solar System Bodies., MPC Archive Statistics oraz Lista ponumerowanych planetoid MPC (ang.) (Uwaga: plik ma ok. 20 MB).

Przypisy | edytuj kod

  1. Edward Tedesco, Leo Metcalfe: New study reveals twice as many asteroids as previously believed (ang.). European Space Agency, 2002-04-04. [dostęp 2010-08-27].
  2. Two Asteroids to Pass by Earth Wednesday (ang.). NASA Jet Propulsion Laboratory, 2010-09-07. [dostęp 2013-08-23]. [zarchiwizowane z tego adresu.
  3. Solar System Exploration: Planets: Asteroids: Read More, NASA (ang.).
  4. Small Asteroid or Comet ‘Visits’ from Beyond the Solar System (ang.). NASA, 2017-10-26.
  5. MPEC 2017-V17 : NEW DESIGNATION SCHEME FOR INTERSTELLAR OBJECTS (ang.). W: Minor Planet Center Electronic Circular [on-line]. Międzynarodowa Unia Astronomiczna. [dostęp 2017-11-09].
  6. MarcoM. Micheli MarcoM. i inni, Non-gravitational acceleration in the trajectory of 1I/2017 U1 (‘Oumuamua), „Nature”, 559 (7713), 2018, s. 223–226, DOI10.1038/s41586-018-0254-4, ISSN 0028-0836 [dostęp 2018-07-11]  (ang.).
  7. Teleskop VLT z ESO obserwuje przyspieszenie 'Oumuamua. Nowe wyniki wskazują, że międzygwiezdny podróżnik 'Oumuamua jest kometą (pol.). ESO Polska, 2018-06-27. [dostęp 2018-07-15].
  8. Leszek Czechowski: Planety widziane z bliska. Warszawa: Wiedza Powszechna, 1985.
  9. Imke de Pater, Jack Lissauer: Planetary Sciences. Cambridge, 2001.
  10. JPL Small-Body Database Search Engine (ang.). [dostęp 2019-01-01]. – baza danych małych ciał Układu Słonecznego Jet Propulsion Laboratory.
  11. ekonews063.pdf, s. 5 (ang.).
  12. Loty kosmiczne – Misja Rosetta (pol.).
  13. KarenK. Northon KarenK., NASA’s Dawn Mission to Asteroid Belt Comes to End, „NASA”, 1 listopada 2018 [dostęp 2018-11-03]  (ang.).
  14. HubertH. Bartkowiak HubertH., Wystartował OSIRIS-REx, czyli do asteroidy i z powrotem, kosmonauta.net, 9 września 2016 [dostęp 2016-09-13]  (pol.).

Linki zewnętrzne | edytuj kod

Kontrola autorytatywna (typ obiektu astronomicznego):
Na podstawie artykułu: "Planetka" pochodzącego z Wikipedii
OryginałEdytujHistoria i autorzy