Chemia bionieorganiczna w encyklopedii
Z Wikipedii, wolnej encyklopedii Przejdź do nawigacji Przejdź do wyszukiwaniaChemia bionieorganiczna – dziedzina chemii badająca rolę metali w układach biologicznych. Ponieważ chemia bionieorganiczna stanowi połączenie chemii nieorganicznej i biochemii, to dyscyplina ta zajmuje się zarówno naturalnymi zjawiskami, takimi jak mechanizm działania metaloprotein, jak i zmodyfikowanymi cząsteczkami białek oraz całkowicie sztucznymi układami wzorowanymi na naturalnych.
Do istotnych procesów, którymi zajmuje się ta nauka, należy transport elektronów w kompleksach białkowych, wiązanie i aktywacja substratów przez enzymy wykorzystujące atomy metali jako kofaktory oraz badanie transportu jonów przez pompy jonowe. Wiele procesów biologicznych o dużym znaczeniu dla przetrwania danego organizmu (m.in.oddychanie komórkowe) jest całkowicie zależnych od obecności układów, które są przedmiotem badań chemii bionieorganicznej.
Pokrewną dyscypliną, która w pewien sposób zawiera się w chemii bionieorganicznej, jest chemia bioorganometaliczna, zajmująca się badaniem związków bioorganometalicznych (posiadających atomy węgla bezpośrednio związane z atomem metalu).
Spis treści
Historia | edytuj kod
Po raz pierwszy związki metaloorganiczne zostały wykorzystane w medycynie przez Paula Ehrlicha do leczenia kiły. W 1909 opracował on Salvarsan, związek aromatyczny zawierający arsen, będący (mimo swojej wysokiej szkodliwości) pierwszym skutecznym lekiem na kiłę. Kolejnym dużym krokiem w rozwoju chemii bionieorganicznej było wykorzystanie cis-platyny (cis-PtCl2(NH3)2) przez Barnetta Rosenberga do leczenia nowotworów w latach 60. XX wieku. Rozwój technik biofizycznych takich jak krystalografia rentgenowska i spektroskopia NMR biopolimerów, pozwolił na dokładne badania strukturalne biocząsteczek, co doprowadziło do ustalenia budowy centrów aktywnych wielu metaloenzymów oraz oddziaływań kwasów nukleinowych z atomami metali.
Obecnie dalszy rozwój tych technik, a także różnych rodzajów metod spektroskopowych i obliczeniowych, umożliwia dokładniejsze badanie mechanizmów reakcji zachodzących z udziałem związków bionieorganicznych, a także pozwala na projektowanie ich różnych syntetycznych analogów.
Tematyka badań | edytuj kod
Zakres badań prowadzonych w dziedzinie chemii bionieorganicznej jest bardzo szeroki. Do najważniejszych tematów należą:
Transport i magazynowanie metali | edytuj kod
Termin ten oznacza wszystkie procesy zachodzące w komórce, polegające na transporcie jonów oraz kontrolowaniu ich stężenia w różnych obszarach komórki, a także sposoby na związanie i przechowywanie jonów. Transport jonów jest niezwykle ważny dla zachowania homeostazy, zarówno na poziomie pojedynczej komórki, jak i całego organizmu.
Podstawowe procesy biologiczne związane z tym procesem to:
- faza jasna fotosyntezy
- łańcuch oddechowy
- przewodzenie impulsów nerwowych
- wiele szlaków transdukcji sygnału w komórce jest zależnych od jonów wapnia
- usuwanie toksycznych metali ciężkich
Do głównych białek związanych z tymi procesami należy wymienić kanały jonowe, zależne od ATP pompy jonowe oraz białka wiążące jony (np. ferrytyna). Ponadto w procesach transportu lub wiązania jonów biorą udział związki małocząsteczkowe, do których zalicza się m.in. syderofory oraz jonofory. W biologii systemów wprowadzono termin metalom na opisanie wszystkich układów zaangażowanych w kontrolę stężenia jonów metali w organizmie.
Hydrolazy | edytuj kod
Hydrolazy są enzymami tworzącymi lub zrywającymi wiązania w reakcjach chemicznych, w których bierze udział cząsteczka wody. Hydrolazy tworzą jedną z sześciu podstawowych klas enzymów i biorą udział w różnorodnych procesach metabolicznych.
Do hydrolaz wykorzystujących w roli katalitycznej kationy metali należą m.in.:
- proteinazy zależne od jonów cynku
- fosfatazy zależne od jonów żelaza, manganu, magnezu i cynku
- anhydraza węglanowa, która wymaga obecności jonów cynku
Transport elektronów przez metaloproteiny | edytuj kod
Białka zdolne do przeprowadzania procesów związanych z transportem elektronów zalicza się do trzech głównych klas:
- białek zawierających centra żelazowo-siarkowe takich jak ferrodoksyna i rubredoksyna
- niebieskich białek zawierających miedź, do których należy plastocyjanina
- cytochromów
W większości przypadków białka te współpracują z transporterami elektronów niezawierającymi atomów metali, np. z chinonami.
Białka transportujące tlen | edytuj kod
Białka zdolne do wiązania i transportu cząsteczek tlenu wymagają do swojego działania obecności metali, takich jak żelazo, mangan lub miedź. Najbardziej rozpowszechnionym układem zdolnym do wiązania tlenu jest hem, występujący w hemoglobinie oraz mioglobinie. Do innych białek z tej grupy zaliczyć można hemocyjaninę oraz hemoetrynę.
Innymi białkami wiążącymi tlen są oksydazy oraz oksygenazy, wykorzystujące tlen cząsteczkowy do przeprowadzania reakcji chemicznych związanych z wytwarzaniem energii (oksydaza cytochromowa), utlenianiem związków organicznych (cytochrom P450, monooksygenaza metanowa). Ponadto wiele z tych białek jest koniecznych do ochrony komórek przed reaktywnymi formami tlenu, takimi jak nadtlenek wodoru oraz rodnik hydroksylowy. Do enzymów tych należą: peroksydazy, katalazy oraz dysmutaza ponadtlenkowa.
Układy bioorganometaliczne | edytuj kod
Do związków bioorganometalicznych zalicza się głównie hydrogenazy oraz pochodne kobalaminy. Ponadto wiele związków tego rodzaju jest zaangażowanych w usuwanie metali ciężkich przez organizmy jednokomórkowe.
Metabolizm azotu | edytuj kod
Większość szlaków metabolicznych związanych z metabolizmem azotu wymaga obecności metaloprotein. Do najlepiej zbadanych należy nitrogenaza, konieczna do wiązania azotu atmosferycznego i redukcji go do amoniaku, który może być następnie użyty do syntezy aminokwasów .
Badania nad tym procesem odgrywają duże znaczenie, ponieważ otrzymanie genetycznie zmodyfikowanych roślin zdolnych do przeprowadzenia tego procesu pozwoliłoby na znacznie mniejsze zużycie nawozów sztucznych.
Zobacz też | edytuj kod
- Chemia bioorganiczna
- Chemia supramolekularna
- Chemia metaloorganiczna
- Związki kompleksowe
- Enzymologia
Bibliografia | edytuj kod
- Jeremy M. Berg, Lubert Stryer, John L. Tymoczko.; Biochemia wyd III; PWN Warszawa 2007 ISBN 978-83-01-14379-4
- Heinz-Bernhard Kraatz (editor), Nils Metzler-Nolte (editor), Concepts and Models in Bioinorganic Chemistry, John Wiley and Sons, 2006, ISBN 3-527-31305-2
- Ivano Bertini, Harry B. Gray, Edward I. Stiefel, Joan Selverstone Valentine, Biological Inorganic Chemistry, University Science Books, 2007, ISBN 1-891389-43-2
- Wolfgang Kaim, Brigitte Schwederski "Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life." John Wiley and Sons, 1994, ISBN 0-471-94369-X
- Ivano Bertini, Harry B. Gray, Stephen J. Lippard, Joan Selverstone Valentine, "Bioinorganic Chemistry," University Science Books, 1994, ISBN 0-935702-57-1
- Stephen JS.J. Lippard Stephen JS.J., Principles of Bioinorganic Chemistry, Jeremy MarkJ.M. Berg, Mill Valley, Calif.: University Science Books, 1994, ISBN 0-935702-72-5, OCLC 29597892 .
- Rosette M. Roat-Malone, Bioinorganic Chemistry : A Short Course, Wiley-Interscience, 2002, ISBN 0-471-15976-X
- J.J.R. Fraústo da Silva and R.J.P. Williams, The biological chemistry of the elements: The inorganic chemistry of life, 2nd Edition, Oxford University Press, 2001, ISBN 0-19-850848-4
- Lawrence Que, Jr., ed., Physical Methods in Bioinorganic Chemistry, University Science Books, 2000, ISBN 1-891389-02-5
OryginałEdytujHistoria i autorzy
