Gaz cieplarniany


Gaz cieplarniany w encyklopedii

Z Wikipedii, wolnej encyklopedii Przejdź do nawigacji Przejdź do wyszukiwania Emisja CO2 na świecie

Gaz cieplarniany, gaz szklarniowy (GHG, z ang. greenhouse gas) – gazowy składnik atmosfery biorący udział w efekcie cieplarnianym.

Gazy cieplarniane przepuszczają większość docierającego do planety elektromagnetycznego promieniowania słonecznego (zwanego krótkofalowym), a pochłaniają promieniowanie podczerwone (zwane długofalowym) z planety[1]. Dzięki utrudnieniu ucieczki energii w przestrzeń kosmiczną, średnia temperatura atmosfery i powierzchni planety są podwyższone[2]. W atmosferze ziemskiej gazy cieplarniane obecne są zarówno w wyniku naturalnych procesów, jak i na skutek działalności człowieka.

Spis treści

Rodzaje | edytuj kod

Do gazów cieplarnianych na Ziemi zalicza się:

Wkład gazu w efekt cieplarniany zależy od jego zdolności pochłaniania promieniowania podczerwonego i stężenia tego gazu w atmosferze. Przykładowo, metan silniej niż dwutlenek węgla pochłania promieniowanie podczerwone, ale jego ilość w atmosferze jest mniejsza, z czego wynika mniejszy udział tego gazu w efekcie cieplarnianym. Wielkością charakteryzującą możliwość wpływania wybranej substancji na efekt cieplarniany jest potencjał tworzenia efektu cieplarnianego.

Wkład poszczególnych gazów w efekt cieplarniany na Ziemi | edytuj kod

Zawartość gazów cieplarnianych w atmosferze ziemskiej w stosunku do roku 1990  Osobny artykuł: Globalne ocieplenie.

Gazy według ich bezpośredniego wpływu na efekt cieplarniany[3]:

Koncentracje i emisje gazów cieplarnianych na Ziemi | edytuj kod

Para wodna (H2O) | edytuj kod

 Osobne artykuły: Para wodna (meteorologia)Cykl hydrologiczny.

Głównym źródłem pary wodnej w atmosferze jest parowanie globalnego oceanu, mniejszych zbiorników wodnych (morza, jeziora) i roślinności (transpiracja). Zawartość pary wodnej w atmosferze zależy od jej średniej temperatury: w przypadku wzrostu temperatury koncentracja pary wodnej rośnie, w przypadku ochłodzenia - spada. Człowiek nie jest w stanie trwale wpłynąć na średnią koncentrację pary wodnej w atmosferze: ewentualne niedobory zostaną szybko uzupełnione przez parowanie z ogromnego rezerwuaru, jakim jest ocean, ewentualne lokalne nadwyżki (np. związane z użyciem chłodni kominowych) skończą się powstaniem zachmurzenia, opadów i wycofaniem nadmiaru pary z atmosfery[6][7][8].

Dwutlenek węgla (CO2) | edytuj kod

 Osobny artykuł: Dwutlenek węgla w atmosferze Ziemi.

Badania rdzeni lodowych pokazują, że w ciągu ostatnich 800 000 lat (do czasu rewolucji przemysłowej) koncentracja dwutlenku węgla w atmosferze wahała się w granicach od 170ppm (podczas epok lodowych) do 300ppm (podczas interglacjałów)[6][9]. Od roku 1750 człowiek doprowadził do znacznego zwiększenia stężenia dwutlenku węgla i innych gazów cieplarnianych w atmosferze[10]. Według danych Światowej Organizacji Meteorologicznej, w roku 2017 koncentracja dwutlenku węgla wyniosła 405,5±0,1 ppm (wzrost o 46% czyli ok. 127 ppm względem 1750)[11].

Źródła naturalne | edytuj kod

Ilość dwutlenku węgla wydzielanego do atmosfery ziemskiej ze źródeł naturalnych jest 20 razy większa od emisji pochodzenia antropogenicznego (związanej z aktywnością ludzką)[12]. Występowanie innych od powyższych danych wynika z odmiennego zdefiniowania naturalnych źródeł emisji gazów cieplarnianych. Antropogeniczna emisja dwutlenku węgla jest pięciokrotnie mniejsza od naturalnej, przy zdefiniowaniu jej jako działalności wulkanicznej i procesów zachodzących w glebie[13]. Należy pamiętać, że w naturalne emisje dwutlenku węgla są kompensowane przez naturalne procesy jego pochłaniania, takie jak np. wietrzenie skał czy fotosynteza[14]. W efekcie przed początkiem okresu masowego spalania paliw kopalnych przez człowieka ilości dwutlenku węgla dostarczanego i odbieranego z atmosfery równoważyły się, przez co jego stężenie atmosferyczne pozostawało na poziomie 260–280 ppm w czasie 10 000 lat między maksimum ostatniego zlodowacenia a początkiem rewolucji przemysłowej[15].

Do naturalnych źródeł emisji dwutlenku węgla zalicza się między innymi :

  • zbiorniki wodne (uwalnianie rozpuszczonego w niej CO2)[14],
  • aktywność biologiczną flory i fauny (oddychanie i procesy rozkładu)[14] ,
  • aktywność wulkaniczną – emisje gazów. Wielkości emisji gazów wulkanicznych różnią się znacznie w czasie[14][16].

Źródła antropogeniczne | edytuj kod

 Osobny artykuł: Lista państw według rocznej emisji CO2.

Do źródeł emisji powodowanych działalnością człowieka zalicza się przede wszystkim:

Ogólnoświatowa emisja dwutlenku węgla związana ze spalaniem paliw kopalnych i produkcją cementu wyniosła w roku 2017 36,2 mld t (27% Chiny, 15% USA, 10% Unia Europejska, 7% Indie, 42% reszta świata)[19]. 40% tych emisji związany był z użyciem węgla kamiennego, 35 - ropy naftowej, 20% - gazu ziemnego, 4% - z produkcją cementu a 1% - z pochodniami gazowymi[19]. Emisja CO2 w 2017 wzrosła o 1,6% w stosunku do 2016 roku[20].

Emisje związane ze zmianami użytkowania terenu (wylesianiem, wysuszaniem mokradeł itd.) wyniosły w roku 2017 ok. 5,13 mld t[19].

W Unii Europejskiej w 2005 r. z ogólnej emisji 4543 mln t na sektor energetyczny przypadło 1569,4 mln t; transport 1246,6 mln t; przemysł 942,9 mln t; gospodarstwa domowe 482,0 mln t; usługi 276,5 mln t; inne 26,0 mln t[21]. Ogółem emisja CO2 od roku bazowego protokołu z Kioto (1990) wzrosła ok. 49%[22].

Polska | edytuj kod

Nie uwzględniając użytkowania lasów i gruntów emisja CO2 w 1988 r. była najwyższa i osiągnęła 565 mln t ekwiwalentu CO2. W latach 1988–1990 emisja ta spadła do 454 mln t ekwiwalentu CO2 rocznie. Od 1999 r. poziom ten nie przekracza 400 mln t ekwiwalentu CO2 rocznie. W roku 2017 polskie emisje związane ze spalaniem paliw kopalnych i produkcją cementu wyniosły w sumie ok. 322 mln t CO2 (za 62% odpowiadało spalanie węgla, 24% - ropy, 12% - gazu, 2% - produkcja cementu)[23].

Metan (CH4) | edytuj kod

Wraz z nastaniem rewolucji przemysłowej rozpoczął się szybki wzrost koncentracji metanu w atmosferze. W połowie lat osiemdziesiątych XX wieku, gdy stężenie gazu osiągnęło 1650 ppb, wzrost spowolnił, a między rokiem 2000 i 2006 r. całkowicie ustał[14]. Od roku 2006 ponownie obserwuje się jednak wzrost koncentracji metanu w atmosferze[14]: według danych Światowej Organizacji Meteorologicznej, w roku 2017 stężenie CH4 wyniosło 1859±2 ppb (wzrost o 157% czyli ok. 1138 ppb względem 1750)[11]. Przyczyny ostatniego przyrostu ilości metanu w atmosferze są tematem badań[24]. Analizy składu izotopowego wskazują, że jest on efektem aktywności bakterii (np. w bagnach, zbiornikach słodkiej wody, na wysypiskach czy w związku z rolnictwem)[25].

Źródła naturalne | edytuj kod

Do naturalnych źródeł metanu zalicza się przede wszystkim:

  • mokradła[18][26][27],
  • źródła geologiczne (naturalne uwalnianie metanu z głębi Ziemi)[26],
  • wody słodkie (gnicie szczątków organicznych)[26],
  • termity[26],
  • pożary roślinności[26],
  • wieloletnią zmarzlinę i klatraty metanu[26][28]

W latach 2003-2012 średnie roczne emisje metanu z mokradeł wyniosły najprawdopodobniej 167 (między 127 a 202) mln ton CH4 a z pozostałych źródeł naturalnych w sumie 64 (między 21 a 132) mln ton CH4[26].

Źródła antropogeniczne | edytuj kod

Do źródeł metanu związanych z działalnością człowieka zalicza się przede wszystkim:

W latach 2003-2012 średnie roczne emisje metanu związane z wydobyciem i użyciem paliw kopalnych wyniosły najprawdopodobniej 105 (między 77 a 133) mln ton CH4 a związane z rolnictwem - 188 (między 115 a 243) mln ton.[26]

Podtlenek azotu (N2O) | edytuj kod

Według danych Światowej Organizacji Meteorologicznej w roku 2017 średnia koncentracja podtlenku azotu wyniosła 329,9±0,1ppb, czyli o 22% więcej niż w czasach przed rewolucją przemysłową[11]. Najistotniejszym źródłem tego związku związanych z działalnością człowieka jest rolnictwonawozy azotowe niepobrane przez rośliny są przekształcane przez mikroorganizmy w tlenek azotu[14].

Przypisy | edytuj kod

  1. Greenhouse gases - AMS Glossary, glossary.ametsoc.org [dostęp 2018-09-18]  (ang.).
  2. MarcinM. Popkiewicz MarcinM., AleksandraA. Kardaś AleksandraA., SzymonS. Malinowski SzymonS., Efekt cieplarniany - jak to działa, naukaoklimacie.pl, 12 stycznia 2015 [dostęp 2018-09-18]  (pol.).
  3. J.T.J.T. Kiehl J.T.J.T., Kevin E.K.E. Trenberth Kevin E.K.E., Earth’s annual global mean energy budget, „Bulletin of the American Meteorological Society”, 78, 2018, s. 197–208, DOI10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2 .
  4. Climate Change Indicators in the United States. [dostęp 2015-12-14].
  5. Wallace, John M. and Peter V. Hobbs. Atmospheric Science; An Introductory Survey.Elsevier. Second Edition, 2006. ​ISBN 978-0-12-732951-2​. Chapter 1.
  6. a b Popkiewicz i inni, Nauka o klimacie, wyd. Wydanie II poprawione, Warszawa: Wydawnictwo Nieoczywiste, 2019, ISBN 978-83-8110-659-7, OCLC 1084540251 [dostęp 2019-02-13] .
  7. AleksandraA. Kardaś AleksandraA., Mit: parowanie zrównoważy wzrost poziomu morza, naukaoklimacie.pl, 31 maja 2017 [dostęp 2019-02-13] .
  8. SkepticalS. Science SkepticalS., Mit: Para wodna jest najważniejszym gazem cieplarnianym, MarcinM. Popkiewicz (tłum.), naukaoklimacie.pl, 27 września 2013 [dostęp 2019-02-13] .
  9. The Keeling Curve, The Keeling Curve [dostęp 2019-02-13]  (ang.).
  10. Mit: Nauka nie jest zgodna w temacie globalnego ocieplenia., naukaoklimacie.pl [dostęp 2015-12-14] .
  11. a b c GAW, WMO Greenhouse Gas Bulletin (GHG Bulletin), t. 14, library.wmo.int, 2018, ISSN 2078-0796 [dostęp 2019-02-13] .
  12. Vital Climate Graphics (ang.). UNEP/GRID-Arendal.
  13. Kucowski J., Laudyn D., Przekwas M., Wyd. WNT: Energetyka a ochrona środowiska. Warszawa: 1993.
  14. a b c d e f g h i j k l Carbon and Other Biogeochemical Cycles [w:] IPCC, Climate Change 2013 - The Physical Science Basis, „Cambridge Core”, 2009, DOI10.1017/cbo9781107415324 [dostęp 2018-09-18]  (ang.).???
  15. Chapter 7. Couplings Between Changes in the Climate System and Biogeochemistry. W: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.): Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.. ISBN 978-0-521-88009-1. (ang.)
  16. Hoffmann, PF, AJ Kaufman, GP Halverson, DP Schrag. A neoproterozoic snowball earth. , 1998 (ang.). 
  17. a b c Corinne LeC.L. Quéré Corinne LeC.L. i inni, Global Carbon Budget 2018, „Earth System Science Data”, 10 (4), 2018, s. 2141–2194, DOI10.5194/essd-10-2141-2018, ISSN 1866-3516 [dostęp 2019-02-13]  (ang.).
  18. a b WiktorW. Kotowski WiktorW. i inni, Mokradła a zmiany klimatu. Materiały dla mediów -Światowy Dzień Mokradeł 2019, styczeń 2019 .
  19. a b c Corinne LeC.L. Quéré Corinne LeC.L. i inni, Global Carbon Budget 2018, „Earth System Science Data”, 10 (4), 2018, s. 2141-2194, DOI10.5194/essd-10-2141-2018  (ang.).
  20. R.B.R.B. Jackson R.B.R.B. i inni, Global energy growth is outpacing decarbonization, „Environmental Research Letters”, 13 (12), 2018, s. 405–448, DOI10.1088/1748-9326/aaf303  (ang.).
  21. Leszek Szczygieł: Powstrzymanie zmian klimatycznych – konieczność czy kosztowne fanaberie. www.elektroenergetyka.pl. s. 805. [dostęp 2009-04-23].
  22. Global carbon emissions reach record 10 billion tonnes – threatening two degree target (ang.). 2011.
  23. AleksandraA. Kardaś AleksandraA., Emisje CO2 dalej rosną - budżet węglowy 2018, naukaoklimacie.pl, 18 grudnia 2018 [dostęp 2019-02-13] .
  24. AleksandraA. Kardaś AleksandraA., Nieoczywisty metan, naukaoklimacie.pl, 14 grudnia 2016 [dostęp 2018-09-18]  (pol.).
  25. StefanS. Schwietzke StefanS. i inni, Upward revision of global fossil fuel methane emissions based on isotope database, „Nature”, 538 (7623), 2016, s. 88–91, DOI10.1038/nature19797, ISSN 0028-0836 [dostęp 2018-09-18]  (ang.).
  26. a b c d e f g h i j k l m MarielleM. Saunois MarielleM. i inni, The global methane budget 2000–2012, „Earth System Science Data”, 8 (2), 2016, s. 697–751, DOI10.5194/essd-8-697-2016, ISSN 1866-3516 [dostęp 2019-02-13]  (ang.).
  27. AnnaA. Sierpińska AnnaA., Torfowiska: ważny gracz światowego cyklu węglowego, naukaoklimacie.pl, 4 czerwca 2017 [dostęp 2019-02-13] .
  28. AnnaA. Sierpińska AnnaA., Topnienie zmarzliny niszczy lądowe magazyny węgla, naukaoklimacie.pl, 6 września 2017 [dostęp 2019-02-13] .

Linki zewnętrzne | edytuj kod

Kontrola autorytatywna (air pollutant):
Na podstawie artykułu: "Gaz cieplarniany" pochodzącego z Wikipedii
OryginałEdytujHistoria i autorzy